Re: Templated Casting operators
 
On Jul 9, 12:34 pm, Kai-Uwe Bux <jkherci...@gmx.net> wrote:
Narinder wrote:
On Jul 8, 11:06 pm, Kai-Uwe Bux <jkherci...@gmx.net> wrote:
At the moment, I don't see why.
That is indeed curious.
However on my issue, I think I am expecting something from C++ .. when
I obviously should know better,  "C++ (101): C++ doesn't dispatch on
the return type".
That, I think, is not the entire picture. There is clause [14.8.2.3] that
deals with deducing template arguments for templated conversion operators=
..
Here, the result type desired by the conversion is taken into account.
Howerver, reading that clause, I find it hard to tell whether the deducti=
on
should fail because of ambiguity, whether the const version should be
instantiated, or whether the non-const version should be chosen.
My question stems from wanting to pass parameters to a function via an
intermediary which holds references to the values to be passed. And
this would be done at runtime.
Given :
void f( double x);
I want to be able to do:
const double x=3.142;
intermediary v = x; // so v will hold a
std::tr1::reference_wrapper<const double>
f(v);               // I suspect gcc will complain becaus=
e v is unable
to give up its const ref
                    // but as we have seen gcc call=
s operator
double&()
Hm, the following compiles:
#include <iostream>
void foo ( double arg ) {
  std::cout << arg << "\n";
}
  template < typename T >
  class reference_wrapper {
    T* the_ptr;
  public:
    typedef T type;
    typedef T& reference;
    reference_wrapper ( reference t_ref )
      : the_ptr ( &t_ref )
    {}
    operator reference ( void ) {
      return ( *the_ptr );
    }
    reference get ( void ) {
      return ( *the_ptr );
    }
 };
int main ( void ) {
  double const pi = 3.14159;
  reference_wrapper< double const > x = pi;
  foo( x );
}
My way around this will be to have the user provide a precise boost
typelist embodying the function signature:
boost::mpl::vector<double>
and use this to dispatch correctly.
Huh?
Best,
Kai-Uwe Bux
Consider the following functions:
f_ref(double&)              // may be a member function that keeps the
rw ref
f_const_ref(const double&)  // maybe a memeber function that keeps the
ro ref
f_val(double)               // expects the value byval
you have one 'variant'
variant v = 3.142;
double x=3.142;
variant v2 = x;
const double xx=3.142
variant v3 = 3.142
I want to deliver (since it doesn't have to be done by casting) v2 to
f_ref, but not v & v3
I want to deliver v2 & v3 to f_const_ref but not v
and i want to be able to deliver all of them to f_val
Moreover my variants will be initialised at runtime.
I have sketched (but compiles and executes ) what I think is a
solution.
(I have used boost::mpl::vector to be able to generalise to more than
one parameter)
-------------------------------
#include<iostream>
#include<boost/ref.hpp>
#include<boost/variant.hpp>
#include<boost/mpl/vector.hpp>
#include<boost/mpl/at.hpp>
using namespace std;
double pi = 3.142;
typedef boost::reference_wrapper<double>  ref;
typedef boost::reference_wrapper<const double>  const_ref;
struct klass
{
    klass(double & x):innerVariant(boost::ref(x)){}
    klass(const double & x):innerVariant(boost::cref(x)){}
    template<class T>
    operator T& ()
    {
        cout << " ... casting to double&  ";
        return boost::get<ref>(innerVariant);
    }
    template<class T>
    operator const T&()
    {
        cout << " ... casting to const double&  ";
        if(boost::get<ref>(&innerVariant))
        {
            return boost::get<ref>(innerVariant);
        }
        return boost::get<const_ref>(innerVariant);
    }
    const double &get_by_val()
    {
        return (const double&)(*this);
    }
private:
    boost::variant<ref,const_ref >  innerVariant;
};
template<class T,class U>
struct innerCast
{
    static const T & get(U &k)
    {
        return k.get_by_val();
    }
};
template<class T,class U>
struct innerCast<T&,U>
{
    static T & get(U &k)
    {
        return k;
    }
};
template<class T,class U>
struct innerCast<const T&,U>
{
    static const T & get(U &k)
    {
        return k;
    }
};
template<class T>
struct cast
{
    typedef typename boost::mpl::at_c<typename T::param_type,0>::type
ret_type;
    static ret_type get(klass &k)
    {
        return innerCast<ret_type,klass>::get(k);
    }
};
/////////////////////////////////////////
// Below is what would be the user code
/////////////////////////////////////////
struct f
{
    typedef boost::mpl::vector<double&>::type param_type;
    static void call(double &x)
    {
        cout << " double &x\n";
    }
};
struct fc
{
    typedef boost::mpl::vector<const double&> param_type;
    static void call(const double &x)
    {
        cout << " const double &x\n";
    }
};
struct ft
{
    typedef boost::mpl::vector<double> param_type;
    static void call(double x)
    {
        cout << " double\n";
    }
};
int main()
{
    try
    {
        double x(3.142);
        klass k_non_const(x);
        klass k_const(3.142);
        f::call( cast<f>::get(k_non_const) );
        fc::call( cast<fc>::get(k_non_const));
        ft::call( cast<ft>::get(k_non_const));
        fc::call( cast<fc>::get(k_const));
        ft::call( cast<ft>::get(k_const)); // this one *NO LONGER*
throws with gcc
    }
    catch(const std::exception &err)
    {
        cout << err.what() << "\n";
    }
}
---------------------------------------------
Maybe some of the class names have alot of scope to be more
meaningful :-)
Best Regards
N